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Severe sepsis and septic shock
are marked by a widespread,
whole-body, inflammatory re-
action (1). The associated cyto-

kine-induced coagulation abnormalities

(2) responsible for the formation of mi-
crothrombi in the microcirculation (3)
are one of the possible mechanisms un-
derlying organ failure and death (4).
However, inhibition of the global inflam-
matory reaction (5, 6) of specific inflam-
matory cytokines (7–14) or of the coagu-
lation cascade (15) did not achieve any
survival benefit. Less attention has been
paid to the role of the fibrinolytic path-
way in sepsis. Although fibrinolysis is im-
paired in the septic state (16, 17), its part
in determining clinical severity is still
undefined, and interventions specifically
aimed at reactivating it have not been
investigated.

The idea for this trial originated from
two studies describing survival improve-
ment in patients with sepsis treated with
recombinant human activated protein C
(18) or undergoing a strategy of tight
control of blood glucose to maintain eu-
glycemia (19). Although subsequent
studies could not confirm the benefits of
recombinant human recombinant acti-
vated protein C and tight glycemic con-
trol on outcome (20, 21), the possible

mechanism by which both interventions
acted remained unclear. We wondered
whether recombinant human activated
protein C and tight glycemic control may
share a common mechanism, i.e., reacti-
vation of fibrinolysis as a consequence of
lower levels of plasminogen activator in-
hibitor (PAI)-1, the most powerful endog-
enous inhibitor of fibrinolysis. In fact, in
patients with diabetes (22, 23), hypergly-
cemia/insulin resistance are powerful in-
hibitors of fibrinolysis, boosting the
concentration and activity of PAI-1. Re-
combinant human activated protein C,
besides having anti-inflammatory and an-
ticoagulant properties (24, 25), is also a
powerful suppressor of PAI-1 (26, 27). A
possible common mechanism for the
beneficial effect of both glycemic control
and recombinant human activated pro-
tein C might, therefore, lie in the de-
crease in PAI-1 concentration/activity
and the consequent reactivation of fibri-
nolysis. This mechanism is likely to be
maximally effective in full-blown sepsis,
when both inflammation and coagulation
are massively activated, microthrombi
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Objective: To investigate whether tight glycemic control, in
patients with sepsis, may restore a normal fibrinolysis by lower-
ing plasminogen activator inhibitor (PAI)-1 levels.

Design: Prospective randomized clinical trial.
Setting: Three Italian university hospital intensive care units.
Patients: Ninety patients with severe sepsis/septic shock.
Interventions: Patients were randomized to receive either tight

glycemic control (treatment group, target glycemia, 80–110 mg/
dL) or conventional glycemic control (control group, target glyce-
mia, 180–200 mg/dL).

Measurements: Inflammation, coagulation, and fibrinolysis
markers were assessed, along with Sepsis-related Organ Failure
Assessment scores, >28 days.

Main Results: In the whole population, at enrolment, inflam-
mation and coagulation were activated in >80 of 90 patients,
whereas fibrinolysis, as assessed by PAI-1 activity and concen-
tration, was impaired in only 34 patients. The extent of the
inflammatory reaction or of the coagulation activation was unre-
lated to outcome. In contrast, 90-day mortality rate of the 34

patients in whom fibrinolysis was definitely inhibited at study
entry was twice that of the 56 patients in whom fibrinolysis was
intact (44% vs. 21%, p � 0.02). After randomization, during the
study, daily glycemia averaged 112 � 23 mg/dL in the treatment
group and 159 � 31 mg/dL in controls (p < 0.001), with total daily
administered insulin 57 � 59 IU and 36 � 44 IU, respectively (p <
0.001). A small, but significant, enhancement of fibrinolysis could
be observed in the treatment group, as indicated by the time
course of PAI-1 activity (p < 0.001), PAI-1 concentration (p �
0.004), and plasmin–antiplasmin complexes (p < 0.001). Morbid-
ity, rated with the Sepsis-related Organ Failure Assessment score,
became significantly lower (p � 0.03) in the treatment group.

Conclusions: Fibrinolysis inhibition, in severe sepsis/septic
shock, seems to have a relevant pathogenetic role. In this context,
tight glycemic control seems to reduce, with time, the fibrinolytic
impairment and morbidity. (Crit Care Med 2009; 37:424–431)

KEY WORDS: sepsis; shock; septic; fibrinolysis; plasminogen
activator inhibitor 1; blood glucose; tight glucose control
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have already formed, and fibrinolysis is
significantly impaired. In these condi-
tions, reactivation of the fibrinolytic sys-
tem could theoretically restore end-organ
perfusion. Therefore, in this multicenter
randomized clinical study, we primarily
investigated the fibrinolyitic pathway in
patients with severe sepsis and septic
shock and its relationship with tight gly-
cemic control.

METHODS

Participants. Patients were studied from
December 2004 to March 2007 at three uni-
versity hospitals. The study was approved by
the institutional review boards of each hospi-
tal, and written consent was delayed until the
patient had recovered from the effects of se-
dation. Patients were enrolled if they met pre-
viously described criteria (28, 29) for severe
sepsis or septic shock. Exclusion criteria were
1) age �16 years; 2) hematologic malignan-
cies or previous bone marrow transplantation;
3) type I diabetes mellitus; and 4) likelihood of
early death because of the underlying disease.

Study Design. The primary end point of
this study was to investigate whether preven-
tion of hyperglycemia using a strategy of tight
control of blood glucose concentration, as op-
posed to a conventional one, improved fibri-
nolysis by reducing PAI-1 concentration/
activity. Secondary end points were to
investigate the effects of this strategy on organ
dysfunction and intensive care unit and 90-day
mortality.

Patients were randomized to either tight
glycemic control (treatment group, 45 pa-
tients) or conventional glycemic control (con-
trol group, 45 patients) for the entire study
period. Patients were allocated by block ran-
domization and stratified, according to the
clinical decision of the attending physician, to
receive recombinant human activated protein
C or not.

Glucose control and insulin treatment in
the two groups was performed as described by
Van den Berghe et al (19). Target glycemia,
measured at least every 4 hours, was 80 and
110 mg/dL in the treatment group and be-
tween 180 and 200 mg/dL in the control
group.

Data Collection. The study lasted 28 days.
Data were collected daily for the first 7 days,
every second day until day 13, and then every
fifth day until the end of the study or until
discharge or death if they occurred early.

Laboratory Measurements. Circulating
levels of interleukin-6, C-reactive protein, and
tumor necrosis factor-� were measured as
markers of inflammatory activation. Pro-
thrombin fragments 1 � 2 and thrombin-
antithrombin complexes, both reflecting the
amount of generated thrombin, were mea-
sured as biochemical markers of coagulation
activation. Concentration and activity of PAI-1
and plasma levels of tissue plasminogen acti-

vator �using an assay detecting it mainly when
complexed to PAI-1, thus indirectly reflecting
PAI-1 levels themselves (30)� were determined
as markers of fibrinolytic inhibition (the
higher levels corresponding to greater inhibi-
tion); plasmin–antiplasmin complexes and D-
dimer levels were measured as markers of fi-
brinolytic activation (the latter also reflecting
fibrin generation). The 5th and 95th percen-
tiles of the distribution of the values of each
investigated variable, as measured in a popu-
lation of 50 normal subjects (age and gender-
matched to the study population), were con-
sidered as the upper and lower boundaries of
the normality range for each variable. Post
hoc, we defined as patients with inhibited fi-
brinolysis the ones in whom both PAI-1 activ-

ity and PAI-1 concentration were above the
normal ranges.

Each patient’s PAI-1 promoter gene,
thrombin-activatable fibrinolysis inhibitor
gene, and angiotensin-converting enzyme
gene genotypes were assessed by polymerase
chain reaction. All the aforementioned geno-
types were evenly distributed between the two
randomization groups. Because no relation-
ships were found between genotypes and phe-
notype expression, response to therapy, morbid-
ity, and mortality, the polymorphism analysis
will not be considered further here (31).

Statistical Analysis. All data were analyzed
on an intention-to-treat basis using SAS, ver-
sion 8.2 (SAS Institute, Cary, NC). Compari-
sons between treatment groups have been car-

Figure 1. Study flow-chart. Beside the line representing each study day (1–28), we indicated the
number of control and treatment group patients remaining in the study at days 1, 7, 13, 18, 23, and
28. At these same time points, 0, 3, 3, 6, 6, and 7 patients died in the control group and 0, 4, 5, 7, 7,
and 8 in the treatment group. The patients who were neither dead nor in the study were discharged
alive from the intensive care unit to another hospital ward.
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ried out using Student’s t test and chi-square
test (or Fisher’s exact test) for quantitative and
qualitative variables, respectively.

The relationship between outcome and the
baseline variables (coagulation, inflammation,
and fibrinolysis) has been assessed by survival
analysis (log-rank test).

Differences over time between treatment
and control groups for each variable were in-
vestigated by using analysis of covariance for
repeated measures according to a mixed
model with treatment (tight or conventional
glucose treatment) and time-fixed effects;
baseline value of each variable has been in-
cluded as covariate for adjusting for baseline
variability. Variables were natural log-trans-
formed for analyses. p values of �0.05 were
considered as statistically significant. p values
refer to the trajectory �28 days and not to the
differences of means at any given time point,
which, instead, were analyzed using Student’s
t test without any correction for multiple
comparisons. As these analyses have been ob-
tained under the assumption of missing at

random, their results have to be considered
with some caution.

To demonstrate an effect size of 0.30 be-
tween the two treatment groups at a statistical
significance of 0.05 (two-tailed) and a power of
0.80 (at least) with an unpaired Student’s t
test, 40 patients per group were required; 45
patients were enrolled to account for 10%
dropout rate.

RESULTS

A total of 216 patients were screened,
and 90 of them were eligible to be in-
cluded in the study (Fig. 1). Forty-five
patients were randomized to the treat-
ment group and 45 to the control group.
Human recombinant activated protein C
was given to 12 patients in the treatment
group and to 10 controls (p � 0.62).
Because this cotreatment did not affect
any of the primary or secondary end

points, for sake of clarity, it will not be
discussed any further. Table 1 summa-
rizes the clinical characteristics of the
study population and the baseline profile
of the biochemical markers of inflamma-
tion, coagulation, and fibrinolysis. At en-
rolment, treatment and control groups
did not differ in any of the considered
variables. However, in the control group,
PAI-1 concentration tended to be higher
(p � 0.09), the patients included tended
to be older (p � 0.07), and more men
were included (p � 0.08) than in the
treatment group. The genetic polymor-
phisms we investigated were similarly
distributed between the two groups.

Fibrinolysis Inhibition and Outcome.
It is worth noting that fibrinolysis was
inhibited in only a fraction of patients
with sepsis. The clinical effects of fibrino-
lysis inhibition are summarized in Figure

Table 1. Characteristics of the study population and profile of biochemical markers of inflammation, coagulation, and fibrinolysis at baselinea

Variable Whole Population (n � 90) Treatment Group (n � 45) Control Group (n � 45) pb

Males, n (%) 56 (62) 24 (53) 32 (71) 0.08
Age (yrs) 61 � 15 58 � 15 64 � 14 0.07
BMI (kg/m2) 26.4 � 6.4 26.5 � 7.9 26.2 � 4.6 0.85
ICU admission, n (%)

Medical 56 (62.2) 30 (66.7) 26 (57.8) 0.38
Surgical 34 (37.8) 15 (33.3) 19 (42.2) 0.38

Infection site, n (% of patients in the category)
Pulmonary 39 (43.3) 21 (46.7) 18 (40.0) 0.52
Abdominal 28 (31.1) 13 (28.9) 15 (33.3) 0.65
Urinary tract 9 (10.0) 4 (8.9) 5 (11.1) 1.00
Other 20 (22.2) 11 (24.4) 9 (20.0) 0.61

Comorbidities, n (% of patients in the category)
Hypertension 37 (41.1) 21 (46.7) 16 (35.6) 0.28
Ischemic heart disease 4 (4.4) 2 (4.4) 2 (4.4) 1.00
Heart failure 3 (3.3) 1 (2.2) 2 (4.4) 1.00
Diabetes mellitus (type 2) 12 (13.3) 6 (13.3) 6 (13.3) 1.00
Pancreatitis 3 (3.3) 2 (4.4) 1 (2.2) 1.00
Liver failure 14 (15.6) 5 (11.1) 9 (20.0) 0.24
COPD 18 (20.0) 8 (17.8) 10 (22.2) 0.60
Chronic renal failure 8 (8.9) 4 (8.9) 4 (8.9) 1.00

Severe sepsis, n (%) 59 (65.6) 32 (71.1) 27 (60.0) 0.27
Septic shock, n (%) 31 (34.4) 13 (28.9) 18 (40.0) 0.27
SAPS II score 42.5 � 14.8 40.8 � 15.1 44.1 � 14.5 0.30
SOFA score 10.5 � 3.6 10.7 � 3.5 10.3 � 3.7 0.58
Blood glucose (mmol/L) 9.3 � 4.8 9.7 � 5.6 8.9 � 4.1 0.48
CRP (	g/mL)c (norm: 0.15–6.55) 200.18 � 128.68 201.88 � 104.66 198.49 � 150.11 0.90
IL-6 (pg/mL)c (norm: 0.19–1.00) 265.88 � 207.65 275.55 � 217.38 256.21 � 199.44 0.66
TNF-� (pg/mL)c (norm: 3.75–18.25) 78.73 � 127.07 72.62 � 107.85 84.83 � 144.76 0.65
F1�2 (pmol/L)c (norm: 89.55–341.09) 398.47 � 215.35 409.62 � 237.86 387.34 � 192.29 0.63
TAT (ng/mL)c (norm: 1.05–4.02) 13.47 � 35.04 16.70 � 48.54 10.24 � 10.25 0.39
PAI-1 concentration (ng/mL)c (norm: 1.22–31.49) 41.51 � 52.53 32.13 � 40.31 51.11 � 61.64 0.09
PAI-1 activity (IU/mL)c (norm: 0.20–18.03) 41.26 � 41.79 38.83 � 38.61 43.68 � 45.05 0.58
tPA (ng/mL)c (norm: 2.97–14.93) 22.66 � 49.43 16.32 � 14.05 29.00 � 68.28 0.23
PAP (	g/L)c (norm: 199.40–555.40) 785.79 � 641.07 728.30 � 514.02 843.28 � 748.53 0.40
D-dimer (ng/mL)c (norm: 86.80–649.20) 8879.79 � 9856.56 8263.35 � 9512.16 9496.24 � 10259.29 0.56

COPD, chronic obstructive pulmonary disease; SAPS II, Simplified Acute Physiological Score—2nd version; SOFA, Sepsis-related Organ Failure
Assessment; CRP, C-reactive protein; IL-6, interleukin-6; TNF-�, tissue necrosis factor-�; F1�2, prothrombin fragments 1 � 2; TAT, thrombin–
antithrombin complexes; PAI-1, plasminogen activator inhibitor-1; tPA, tissue plasminogen activator; PAP, plasmin–antiplasmin complexes; BMI, body
mass index (weight in kilograms divided by the square of the height in meters); ICU, intensive care unit.

aPlus-minus values are mean � SD; bp values for the difference between treatment and control groups were calculated using Student’s t test, 
2 test,
or Fisher’s test, as appropriate; crange of normal values for each biochemical marker in the laboratory in which performed their analysis.
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2. At entry, greater levels of fibrinolysis
inhibition, as assessed with quartiles of
average PAI-1 activity and concentration
(Fig. 2A), were associated with greater

morbidity. Survival probabilities (Fig. 2B)
were significantly lower for the 34 pa-
tients whose fibrinolysis, at study entry,
was definitely inhibited (i.e., higher-than-

normal PAI-1 activity and concentration
levels) than for the other 56 patients (log-
rank p � 0.005).

Effects of Tight Glycemic Control on
Fibrinolysis and Outcome. In the treat-
ment group, average daily blood glucose
values (112 � 23 mg/dL) were signifi-
cantly lower than in the control group
(159 � 31 mg/dL), as shown in Figure 3A;
patients in the treatment group received
higher daily dosages of insulin, which
averaged 57 � 59 IU, as opposed to 36 �
44 IU, in the control group (p � 0.001).
The frequency of hypoglycemic epi-
sodes in the two groups is depicted in
Figure 4B. No neurologic consequences
were observed.

The effects of tight glycemic control
on the fibrinolytic pathway are reported
in Figure 4, where they are compared
with those of the conventional approach
(p values, for this analysis, refer to treat-
ment by time interaction). All markers of
fibrinolysis inhibition, PAI-1 activity (p �
0.001), PAI-1 concentration (p � 0.004),
and tissue plasminogen activator (p �
0.01), slightly, but significantly, de-
creased, with time, more in the treatment
group than in the control group (Fig.
4A–C, respectively). Plasmin–antiplasmin
complexes, a marker of fibrinolysis acti-
vation, were significantly higher in the
treatment group than in the controls
(p � 0.001, not shown), whereas D-dimer
was not significantly different between
the two groups (p � 0.36, not shown).
Sepsis-related Organ Failure Assessment
scores also became significantly lower in
the treatment group than in the controls
(p � 0.03), with a time course similar to
the decrease in PAI-1 concentration/
activity (Fig. 3D). Although we observed,
with tight glycemic control, a significant
decrease in morbidity, as assessed with
Sepsis-related Organ Failure Assessment
score, we did not find effects of treatment
on mortality, which was, respectively,
20% and 18% in the intensive care unit
(p � 0.79) and 31% and 29% at 90 days
from discharge (p � 0.82) in the treat-
ment and control groups.

Effects of Tight Glycemic Control on
Inflammation and Coagulation. Al-
though tight glycemic control was asso-
ciated with enhanced fibrinolysis, there
were no effects on the activation of coag-
ulation. Thrombin–antithrombin com-
plexes and prothrombin fragments 1 � 2
levels were abnormally elevated at base-
line (Table 1) and dropped with time in a
similar way in both groups (p � 0.73 and
p � 0.56). The inflammatory cytokines

Figure 2. A, Sepsis-related Organ Failure Assessment (SOFA) scores, measured at study entry in
patients grouped according to quartiles of baseline plasminogen activator inhibitor (PAI)-1 activity and
concentration. Data refer to the whole population. PAI-1 activity and concentration were, respectively,
4.65 � 1.84 IU/mL and 4.71 � 1.89 ng/mL for the first quartile, 15.06 � 5.94 IU/mL and 11.92 � 3.02
ng/mL for the second, 42.50 � 13.23 IU/mL and 33.43 � 10.58 ng/mL for the third, and 103.96 �
30.04 IU/mL and 116.35 � 56.52 ng/mL for the fourth. Each subgroup included 22 of 23 patients.
Higher average PAI-1 activity and concentration are associated with higher SOFA scores (p � 0.001
and p � 0.002, respectively). The regression between the individual baseline SOFA scores and PAI-1
concentration and activity data, points were also significant (r2 � .13, p � 0.0006 and r2 � .10, p �
0.0018, respectively). B, Kaplan–Meier survival curves of patients with inhibited fibrinolysis (34
patients, continuous line) or normal fibrinolysis (56 patients, broken line) at study entry. Inhibited
fibrinolysis was arbitrarily defined by higher than normal levels of both PAI-1 activity (normal:
0.20–18.03 IU/mL) and concentration (normal: 1.22–31.49 ng/mL). As shown, patients with inhibited
fibrinolysis had greater mortality rate than patients with (log-rank p � 0.005).
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were all abnormally elevated at baseline
(Table 1) and decreased with time. Inter-
estingly, interleukin-6 decreased more
significantly (p � 0.001) in the treatment
group than the control group.

DISCUSSION

In this trial, fibrinolysis was inhibited,
at entry, only in about 40% of our pa-
tients with sepsis or septic shock. How-

ever, this inhibition was strongly associ-
ated with morbidity and mortality. In this
context, a tight glycemic control strategy,
as opposed to a conventional one, favored
fibrinolysis by lowering PAI-1 concentra-
tion/activity and significantly reduced
morbidity.

Impaired fibrinolysis during sepsis has
been associated with widespread activa-
tion of coagulation (2, 4) and with release
of inflammatory cytokines (1). In addi-
tion, our results suggest that hyperglyce-
mia/insulin resistance may contribute to
the inhibition of fibrinolysis not only in
chronic disease, as was previously de-
scribed for diabetes, but also in acute
settings. In fact, we found that the strat-
egy of tight control of glycemia in sepsis
reduced the inhibition of the fibrinolytic
system. The clinical consequences de-
pend on the extent to which the impair-
ment of fibrinolysis is responsible for or-
gan failure and outcome, on the degree to
which the reactivation of fibrinolysis can
reverse organ failure, and, finally, on the
clinical “price” that has to be paid for
tight glycemic control.

Several lines of evidence indicate that
persistent or worsening coagulopathy in
sepsis is associated, to different degrees,
with increases in morbidity and mortality
(32–35). A pathogenic role has been at-
tributed to high PAI-1 in worsening mor-
tality in acute respiratory distress syn-
drome (36), and, in severely febrile
patients, fibrinolysis impairment was as-
sociated with morbidity and mortality
more than the activation of coagulation
(37). In our patients too, we found that
fibrinolysis inhibition was associated with
morbidity and mortality (Fig. 2), whereas
coagulation activation was not. At entry,
only a small proportion of patients (34 of
90) had inhibition of fibrinolysis (abnor-
mally high PAI-1 activity and concentra-
tion), and their 90-day mortality rate was
44%, when compared with 21% of the 56
patients in whom fibrinolysis was intact
(p � 0.02). This suggests that inhibition
of fibrinolysis is not a “universal” marker
of sepsis, like inflammation/coagulation
markers, which are abnormally elevated
in virtually all patients with sepsis; in-
stead, it has a pathogenic role leading to
more severe disease (38, 39). It is tempt-
ing to speculate that, in sepsis, for a given
level of microthrombi formation in the
microcirculation, what accounts for over-
all clinical severity is the possibility of
dissolution of microthrombi by an intact
fibrinolytic system.

Figure 3. A, Daily glycemia in the treatment (closed circles) and control group (open circles)
(mean � SD). On any given day except baseline, glycemia in the treatment group was significantly
lower than in the control group. B, Frequency of blood samples (vertical axis) with glycemia below
the threshold (horizontal axis) in the treatment (closed circles) and control group (open circles).
There were 2102 samples for the treatment group and 2113 for the controls. As an example, if 60
mg/dL is chosen as the threshold for hypoglycemia, hypoglycemic episodes were detected in 2.14%
of the treatment group samples and 0.33% of the control samples. This means 45 hypoglycemic
episodes were recorded in the treatment group compared with only 7 in the control group.
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Clinical interventions specifically aim-
ing at the fibrinolytic pathway in sepsis
are lacking. In fact, most interventional
studies in sepsis aimed at suppressing
inflammation (8–14) or coagulation (15).
These approaches may, at best, prevent
progression of the disease by limiting fur-
ther generation of microthrombi but are
not likely to resolve already-established
alterations. Reactivation of fibrinolysis,
on the other hand, may achieve this goal.
In this study, after several days, patients
assigned to the tight glycemic control
group tended to have lower morbidity
than conventionally treated patients. The
time lag was similar to the one required
for PAI-1 concentration/activity to de-
crease. The slight unbalance of PAI-1
concentration (but not activity), age, and

sex observed at the baseline between the
two groups should not affect the overall
results. In fact, although age is reported
as a factor increasing PAI-1 concentra-
tion (40), in our population, at entry, we
could not find any correlation between
PAI-1 concentration or activity and age
(r2 � .01, p � 0.38 and r2 � .001, p �
0.82, respectively). On the other hand,
the influence of sex on PAI-1 concentra-
tion is controversial (41, 42) and—if
present—should induce greater PAI-1
levels in women, as recently reported in a
large series (43). Indeed, because in the
control group, fewer women were in-
cluded and patients were older, the ef-
fects of age and sex should balance each
other. Furthermore, the slight individual
differences in PAI-1 concentrations ob-

served at study entry were taken into
account in the analysis by including base-
line PAI-1 concentration as a covariate in
the statistical model. Our result suggests
a small benefit of tight glycemic control,
which seems time-dependent, as previ-
ously described in a large population of
medical patients (44). Tight glycemic
control is not an easy task. As shown in
Figure 3B, there was a considerable fre-
quency of hypoglycemic episodes. Al-
though the rate of severe hypoglycemic
episodes (glycemia �40 mg/dL) was sim-
ilar in both groups, milder hypoglycemic
episodes (glycemia �80 mg/dL) were
more frequent in the tight glycemic con-
trol group. Blood glucose was tested ev-
ery 4 hours during the study, as was done
by Van den Berghe et al (19, 44), obtain-

Figure 4. Time course of plasminogen activator inhibitor (PAI)-1 activity (A, trajectory difference: p � 0.001), PAI-1 concentration (B, trajectory difference:
p � 0.004), tissue plasminogen activator (C, trajectory difference: p � 0.01), and Sepsis-related Organ Failure Assessment (SOFA) scores (D, trajectory
difference: p � 0.03) in the treatment (closed circles) and control groups (open circles) (mean � SD). p values refers to the trajectory �28 days and not
to the differences of means at any given time point (mixed model for repeated measurements). The asterisks indicate statistical differences in the means
of control and treatment subjects at that study day. The shaded areas in each panel indicate the normal range (up to the 95th percentile) used in the central
laboratory where all samples were analyzed. Note that the immunoassay of tissue plasminogen activator (tPA) measures, to a large extent, circulating
complexes between tPA and PAI-1. Consequently, increased concentration of tPA antigen indicate a reduced rather than increased fibrinolysis (30).
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ing similar glycemic control. It is likely,
however, that if tests are done less fre-
quently or not according to a predeter-
mined protocol, the frequency and sever-
ity of hypoglycemic episodes may outweigh
the benefits of the tight glycemic control
strategy (21).

CONCLUSIONS

In conclusion, our data underline the
importance of inhibition of fibrinolysis in
sepsis. Tight glycemic control seems to
be a potentially effective strategy for re-
activating the fibrinolytic pathway. Alter-
native specific approaches targeted at the
fibrinolytic pathway might also be con-
sidered for the fraction of patients in
whom fibrinolysis is actually inhibited.
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