

European Society of Intensive Care Medicine 24th annual congress

Berlin, 01-05 october 2011

CLINICAL EFFECTS OF MELATONIN IN HIGH RISK CRITICALLY ILL

* Dipartimento di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Università degli Studi di Milano.° Dipartimento di Scienze Economiche, Aziendali e Statistiche, Università degli Studi di Milano. § Cattedra di Biostatistica, Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano.^ Dipartimento di Farmacologia, Chemioterapia e Tossicologia medica, Università degli Studi di Milano.

INTRODUCTION

Endogenous blood melatonin in critical patients is often dramatically low, in both basal levels and night peaks. Exogenous supplementation could determine hypnogogue, immunomodulating and antioxidant effects. Prolonged administration (possible undesirable effects: sleepiness, bronchospasm, accumulation) has not previously been described in critically ill.

OBJECTIVES

Evaluating safety and clinical effects of oral melatonin in high-risk critically ill [1] treated with conscious sedation [2].

Screening and randomization proces

The 82 randomized patients were analyzed with intention to treat approach, without considering the treatment interruptions. enotes Human Immunodeficiency Virus, GCS Glasgow Coma Scale, cLOS Critical Length of Stay, SAPS Simplified Acute Physiology Score, ICU Intensive Care Unit.

re 2. Study Design.

The possibility to randomize each high-risk critically ill patient was established during the first 2 days once got the eriod), when the clinical conditions may require "deep sedation" (RASS target from 0 to -4) obtained by intravenous drugs. After that, according to local guidelines, begun the "conscious sedation" period (RASS arget from 0 to -1) obtained by enteral sedatives. In this period, patients underwent a double-blind, randomized, placebo-controlled treatment (from 3rd ICU day to ICU discharge); clinical indicators were recorded four times a day during the whole ICU stay RASS denotes Richmond Agitation Sedation Scale; ICU denotes Intensive Care Unit; i.v. denotes intravenous; NGT denotes

Naso-Gastric Tube; NJT denotes Naso-Jejunal Tube; RCT denotes Randomized Controlled Trial.

METHODS

Double-blind RCT between placebo and melatonin (3 mg x 2), administered daily at 8 and 12 pm from the third ICU day until discharge. Inclusion/exclusion criteria: Figure 1. Study design and sedation protocol: Figure 2.

UNIVERSITÀ DEGLI STUDI DI MILANO

G. Mistraletti*, M. Tozzi*, S. Miori*, M. Taverna*, B. Cerri*, I. Galluccio*, M. Umbrello*, S. Salini°, Morabito[§], F. Fraschini^, G. Iapichino*.

		Death	Severity of illness Recovery		
		Target RASS			
		 Intravenous sedative Enteral sedative drug 	drugs effect gs effect		
^{3 h}	72 h	ICU days	ICU discharge		
l Baseline	8 p.m.	Treatment Period			
or «patient ption decrea	ts adaptation» to c se, compliance with n	ritical illnesses nechanical ventilation,)			
x 600mg/d	lie) via NGT/NJT				
mg/die) via	a NGT/NJT				
\sum	Melat	onin (6mg/die) via NGT/I	NJT		
T	from 3 rd ICU day to ICU discharge day				
		Placebo via NGT/NJT			

RESULTS

82 patients enrolled: age 72 [60–77] years, SAPS II 41 [34–54], Mechanical Ventilation 11 [6–22] days. Diagnosis: 18 pancreatitis, 37 pneumonia or ALI/ARDS, 23 acute heart diseases, 4 trauma. Admission type: 55 medical, 19 unscheduled surgery, 8 scheduled surgery.

Melatonin fastened weaning from sedative and analgesic drugs and from mechanical ventilation (Figure 3). It decreases the prevalence of infection with a higher effect in long term patients (Figure 4). Melatonin also guaranteed better hemodynamic stability (Table 1).

Neurologic monitoring demonstrated a melatonin significant effect in ameliorating all the observed characteristics (Table 2); particularly, melatonin helped in restoring a quite normal circadian rhythm. Differences in length of stay and ICU/hospital mortality were not significantly different. Undesirable effects were not reported.

Table 2. Neurological indicators

Variables	Placebo (N = 3335)	Melatonin (N = 2414)	Group
Pain (VNR ≥ 3) — no. (%)	955 (28.6)	571 (23.7)	0.33
Anxiety (VNR ≥ 3) — no. (%)	1143 (34.3)	720 (29.8)	0.10
Agitation length > 1h — no. (%)	1136 (34.1)	777 (32.2)	0.12
Sleep — hours per nurse shift			
Morning (7am-1pm)	2.0±1.8	1.9±1.8	0.28
Afternoon (1pm-9pm)	2.7±2.2	2.3±2.3	0.81
Evening (9pm-midnight)	1.4±1.3	1.5±1.6	0.92
Night (midnight-7am)	4.3±1.8	4.5±1.9	0.83
Need for restraints — no. (%)	920 (41.8)	579 (31.1)	0.40
Delirium — no. (%)	71 (4.8)	65 (4.7)	0.77
RASS (point)	0 [-1-0]	0 [0-0]	0.08
Nurse shifts with extra sedation — no. (%)	167 (5.0)	56 (2.3)	<0.01
Nurse shifts with extra neuroactive drugs — no. (%)	248 (7.4)	82 (3.4)	<0.01

able 2. Neurological monitoring during the study period. Observations were registered four times a day. Variable are presented as absolute number (%), or mean ± standard deviation. Comparisons were made by cross-sectional time-series regression models (random-effects, and population-averaged linear models) or by multilevel mixedeffects Poisson regressions, when appropriate. VNR denotes Verbal Numeric Range, RASS denotes Richmond Agitation Sedation Scale

P Value	
Period	Gr∙Per
0.14	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	0.22
<0.01	0.03
<0.01	<0.01
0.44	<0.01
<0.01	<0.01
0.04	0.71
0.06	0.48

							P
Variables	Placebo	Melatonin	Group	P Value	GriDay		
High treatment — no. (%)	(N = 025)	(IN = 525) 475 (80.1)	0.05	 	01200		
Soquential Organ Eailure Assessment — points		2 [1 4]	0.05	<0.01	<0.05		
Sequential Organ Failure Assessment — points	5 [2 -5]	2 [1-4]	0.59	\U.UI	<0.01		
Sepsis — IIO. (%)		245 (46.9)					
None	205 (32.9)	245 (40.8)					
SIRS	119 (14.8)	112 (21.4)	0.10	0.40	-0.01		
Sepsis	263 (32.6)	114 (21.8)	0.16	0.46	<0.01		
Severe Sepsis	84 (10.4)	33 (6.3)					
Septic shock	75 (9.3)	20 (3.8)					
Blood values							
White blood cells ($\cdot 10^3$ /mm ³)	13.8±6.9	11.9±5.7	0.81	0.83	<0.01		
Platelets (·10 ³ /mm ³)	275±192	250±139	0.28	0.06	0.01		
Creatinin (mg/dl)	1.8±1.5	1.5±1.4	0.54	0.43	0.12		
Blood urea nitrogen (mg/dl)	47±29	45±26	0.88	0.70	0.45		No
Aspartate transaminase (UI/I)	62±60	74±105	0.17	0.26	0.20	Plac	ebr
Alanine transaminase (UI/I)	72±128	67±84	0.89	0.80	0.43	Mel	ato
Total bilirubin (mg/dl)	2.8±3.6	2.5±3.3	<0.01	<0.01	<0.01		
Physical examination						B	S
Body temperature (°C)	36.9 [36.5-37.4]	37.0 [36.5-37.5]	0.47	0.27	<0.01		36
Heart rate (bpm)	94.6±15.5	91.1±14.9	0.27	<0.01	0.5		
Systolic blood pressure (mmHg)	129.01±18.4	129.21±21.5	0.9	<0.01	0.02		
Diastolic blood pressure (mmHg)	57.35±12.90	60.77±15.09	0.85	0.10	<0.01		
Gastric residual volume>250 ml (%)	26 (3.8)	17 (3.5)	0.91	0.03	0.54		
Respiratory rate (bpm)	22.48±6.80	22.28±5.90	0.91	0.04	<0.01		
Venous pH	7.40±0.17	7.42±0.04	0.42	0.38	0.62		
Peripheral oxigen saturation	97.78±4.39	98.23±2.07	0.14	0.90	0.79		
Carbon dioxide venous pressure	48.5±8.1	49.6±9.2	0.55	0.53	<0.01		
Ventilation (%)							
Spontaneous Breathing	104 (12.7)	126 (21.4)					
Continuous Positive Airway Pressure	138 (16.9)	189 (32.1)	0 5 4	0.02	-0.01		
Pressure Suppert Ventilation	554 (67.7)	272 (46.3)	0.54	0.02	<0.01		
Pressure Control Ventilation	22 (2.7)	1 (0.2)					
Drugs — no. (%)							
Vasoactive catecholamines	93 (11.3)	32 (5.4)	0.29	0.01	<0.01		Nc
β blockers	39 (4.7)	18 (3.1)	0.56	<0.01	<0.01	Pla	ceb
Inhalational antiasthmatics	126 (15.3)	135 (23)	0.68	<0.01	0.23	Me	elato
						Figu	re
Table 1. Measurements of clinical parameters du	uring the study perio	od. Observations we	ere register	red daily. Va	riables are	mec	na

ented as absolute number (%), median [interquartile range], or mean ± standard deviation. Comparisons were made cross-sectional time-series regression models (random-effects, and population-averaged linear models) or by nultilevel mixed-effects Poisson regressions, when appropriate.

Melatonin administration was shown safe and useful regarding cardio-respiratory and neurological recovery. It determined fastened sepsis resolution in both lab measurements (WBC,PLT, bilirubin) and clinical observations (SOFA, septic state) probably due to its immunomodulating action and reactive oxygen species scavenging. The Melatonin group had faster ventilation weaning, probably due to lower sedation; nurseobserved decreased sleep hours in the morning/afternoon and increased in the night highlighted a quite restored circadian rhythm. Gastric residual volume was not different, as the need for bronchodilators; no excessive sleepiness was shown. No differences in ICU length of stay or ICU/hospital mortality were reported, being this study not powered for these outcomes. In two post-hoc analyses, Melatonin decreased MV days (p = 0.013 in patients treated > 7 days) and ICU mortality (p = 0.047 in patients treated > 40 days), suggesting the necessity of new and adequately powered studies for long-term ICU patients. (Clinicaltrial.gov n° NCT00470821)

Poster nº 0994

condary outcome: weaning from mechanical ventilatior

ndicators begun at the ICU admissio CU denotes Intensive Care Uni

CONCLUSIONS

REFERENCES

1. Iapichino G, et al. Crit Care Med. 2006;34:1039–1043. 2. Cigada M, et al. Journal of Critical Care. 2008;23:349–353.